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I. INTRODUCTION AND SUMMARY

The present program is primarily concerned with the analysis and
design of a transporter to be used by Apollo astronauts to extend their
operating range on the moon. Goals of the program are to design a one-

man transporter with the following characteristics:

1. maximum gross weight from 1000 to 1200 pounds fully loaded
2. payload of approximately 80 pounds (excluding pilot and his
life support system) when fully fueled

3. minimum operating range of 10 miles

In the course of examining the problem of mobility on the Moon, the
question arose whether it should not be possible to take advantage of
the weak lunar gravity and leap from one point to another. Leaping, how-
ever, should not be by rocket with its excessive propellant consumption,
but by pressing against the lunar surface with a foot, after the manner
of certain terrestrial cfeatures such as the kangaroco, rabbit, and frog.
A terrestrial demonstrator of the basic "hopper" is now being built and
is described in Section III. The following status report summarizes one
years work on such a demonstrator and also on the ultimate lunar system

the "Lunar Pogo", under NASA Grant NGR-05-020-258. Basic charac?efistics
5

summarized below also appeared in semi-annual report SUDAAR 359.

Ballistics: Hopping is well adapted to the low lunar gravitational

2

acceleration of 5.31 ft/sec . At 450 elevation launch, a velocity of

15 ft/sec results in a horizontal leap of 50 ft in 4 sec, with a maximum
horizontal capability(l) of 10.7 ft/sec or 7.3 miles/hr. Similarly(e),
a launch velocity of 42 ft/sec yields leaps of 420 ft in 14.3 sec, and a
maximum speed of 28 ft/sec or 19 miles/hr. Pauses between leaps will of
course decrease the average speed. In the event that a given landing
area may be found to be unsatisfactory — a crevasse or a large rock, for
example — a fail safe or abort capability can be provided by adding a
relatively light rocket system. A 1200 1b vehicle executing 50 ft. hops
can for example be stopped dead in mid-flight by a rocket ejecting less

than 2 lbs. of propellant at ISP = 200 sec.



Human Factors: The first and most important question to be consid-

ered in a manned hopping transport system is of course "Can the pilot

take it?" Previous work on human tolerance to acceleration(s) relates
mainly to steady acceleration (centrifuges) or single impulses (ejection
seats). Experimehts to investigate how well a man can tolerate the
repeated accelerations necessary for a hopping trip are described in
Section II. A 10-mile trip might require one thousand 50-foot leaps,
involving average accelerations of 3 g's lasting a total (decel plus
accel) of 0.3 seconds each and separated by about 3 seconds of free-fall
flight. It would of course be both possible and highly probable that rest
or exploratory stops would be made at frequent intervals.

In the absence of firm human tolerance data, the Pogo vehicle has
been sized for average accelerations of 3 g over 0.3 second. The natural
thrust-time function produced by a fixed mass of expanding gas is an
instantaneous 5g decreasing rapidly to lg over 0.15 second. This "spike"
of acceleration will probably be blunted by the compliance of the system
(and the pilot), and could be tailored to any desired shape by suitable

gas valving and adjustment of acceleration distance.

Propulsion: Propulsion is accomplished by expanding gas against g
piston (Fig. l). This propulsion system performance, analogous to that of
a steam engine, depends on the mechanical work done by a working fluid,
rather than on the momentum of a propellant, as with a rocket. Hopping
motion is largely conservative, in that the majority of the gas expansion
work done at launch may be recovered by gas compression upon landing.
Fuel consumption is low; a ten-mile excursion of a l-man, 1200 1b vehicle
should be accomplished with the expenditure of 50 lbs. of Né at ambient
temperatures, or 10 1lbs. of NéHh decomposed at 2000°F. The propulsion
system must meet the novel requirement that each individual leap be
tailored to the terrain. Leap length, and up or down hill slope, all

affect the required piston pressure and hence the gas mass used.

Stabilization: It is essential that a manned hopping vehicle maintain

a prescribed attitude at all times. A preliminary review of human factors
and structural problems indicates that a better design fcesults if one does
not attempt to maintain the pilot continuously upright, but during acceler-
ation and deceleration rotates him and the vehicle so that acceleration

2
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vectors have a fixed orientation relative to his body (Fig. 2).. This
attitude control can be accomplished by paired gyroscopes whose mass is

approximately 20% or less of the systems mass.

Control: It will be necessary for the pilot to identify a suitable
landing point and supply the control system with its coordinates, in order
that a proper launch velocity and elevation be set into the system. The
optics; electronics, servos and computer logic needed to do this have not
yet been designed. It has been assumed for the present that these compo-
nents will be within the state of the art. It should be mentioned that
a vehicle capable of 50 ft. horizontal hops is also capable of 30 foot
vertical reconnaisance hops in situ, during which the terrain can be
scanned for suitable landing sites. This same vertical capability could

be used in negotiating step-like differences in level.

Lunar Surface Reaction: Launch at 450 requires a horizontal traction

force equal to the vertical force of the launching "foot". The design of
a properly sized and cleated foot to supply these forces is difficult
without more knowledge of the lunar surface material, which it is hoped
will be available soon. A launch angle greater than 450 from
horizontal can always be found which will 1limit the required horizontal
traction force component to whatever the soil can provide. The possible
presence of rocks of a size comparable to the "foot" is also a source of
problems. The philosophy adopted in the design of the foot is that it
will be possible within limits for the astronaut to choose his path so
that unacceptable obstacles are avoided, as is often the case in terrestrial
exploration. Because of the absence of soil data, a simple experiment is
being designed in which cleats can be impacted and launched from sand beds,
to give insight into skid and other aspects of soil behavior under tran-

sient loads.
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II. HUMAN FACTORS IN HOPPING LOCOMOTION

The setup for testing human acceleration tolerande is pictured in
Fig. 3, and operates as follows: 1) an electric motor-driven drive train
reels in a cable which 1lifts the seat to a maximum heigﬁt of 6 ft in
5 to 12 seconds; 2) an electromagnetic clutch then disengages the spool
from the drive train allowing the seat to accelerate downward under the
influence of gravity, and 3) as the seat approaches the ground, it is
rapidly stopped in a distance of 2-1/2 ft or less by the action of shock
absorbers mounted on either side of the seat frame. Hydraulic cylinders
have been modified to act as shock absorbers. Variable restrictions in
the fluid lines allow the acceleration forces which stop the seat to be
varied. Gearing in the drive train permits this cycle to be repeated at
approximate intervals of 5, 7, or 12 seconds. Accelerometers attached
to the seat frame and to the test subject will be used to record
accelerations.

With the test setup in its present form, the following parameters
can be varied: l) velocity at contact, 2) duration of acceleration and
deceleration, 3) spacing of acceleration peaks, 4) length of cyclic
run, and 5) seat inclination. It is expected that the intial phase of
the testing program will involve measuring acceleration tolerance as a
function of changes in these parameters. Based on these results, a
decision will be made whether to modify the present test setup so that
the effects on acceleration tolerance can be studied of such features
as different spring-shock combinations (for changing the shape of the
acceleration peaks), a seat rocking motion (to simulate reorientation of
the fixed-leg pogo between and during hops), and different seating’
materials.

A "protocol" document is being prepared describing the circumstances
of the test program in detail as they affect human subjects. A preliminary
survey of the test facility has already been carried out by Dr. Ralph
Pelligra, M.D., of the NASA-Ames staff. Both objective and subjective
data will be gathered, and the analyses used both in component hardware-
design and as input to the integrated system analysis (Ref. 4, p. 20-07)
which is a goal of the Pogo program.

6
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TII. TERRESTRIAL DEMONSTRATOR FOR HOPPING LOCOMOTION.

During the contract period work was begun on a small model to be
operated on the earth which would give a practical demonstration of the
feasibility of the lunar hopper éoncept. As this is only a feasibility
demonstration, the initisl design specifications are set to give a simple,
lightweight vehicle that will be inexpensive and easy to construct. The
vehicle is to weigh approximately 50 lbs., and have the capacity of -
meking 20 to 30 hops of about 10 feet. With this goal in mind work has
begun in three major area affecting the design: propulsion, control,
and structure.

A profile of the propulsion system is shown in Figs. 4 and 5, and a
detailed analysis is presented in Section V. The plumbing schematic is
shown in Fig. 6 and the pressure-time history in Fig. 7.

Control of the propulsion cycle probably will be a radio
signal from the ground to initiate each hop. The cycle will
begin when a small receiver on board receives a signal from a ground
transmitter. This will trigger a timing circuit, which will make & square
pulse of a predetermined length. This pulse is used to control a solenoid
driver which amplifies the pulse so that it has sufficient power to move
the solenoid valve. A possible alternative also being considered is
making a pulse of the proper duration on the ground and sending this to
the vehicle by means of a suitably modulated signal. This system has the
advantage of reducing vehicle weight and making it possible to change the
pulse width without approaching the wvehicle. It does, however, require
a slightly more complicated receiver. In either case, it is expected that
-the transmitter and receiver would be similar to items commercially avail-
‘able for use in model airplanes;

In addition to the propulsion system, an attitude control system is
being developed. Because the primary purpose of the vehicle is to demon-
strate the feasibility of the hopping mode of transportation, and because
the ultimate 3-axis control will be complex and expensive, it was decided
to make the vehicle passively stablized in a horizontal plane by means
of a single strap-down gyroscope with a vertical axis. Azimuthal angle

stability will be aided by a vertical tail fin. The gyro to be used
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(Fig. 8) is tsken from a Norden bomb sight. It weighs 8.5 1bs.

The work done in the structures area to date has been primarily
definition of the basic configuration of the vehicle. So far, this has
been limited to work on the landing legs for the vehicle and relative
positioning of the propulsion and control components of the vehicle.

Study of the structural configuration of the wvehicle is under way.
Since the landing shock will not be absorbed by the propulsion piston in
this simple device, a broad tripod configuration with low center of
gravity and shock absorbers in the legs will be employed. A "stick"
model for study of the configuration is shown in Fig. 9.

Landing legs which resemble those of the Surveyor series spacecraft
in concept are considered necessary to provide stability during landing.
On the full scale craft however the control system will be sophisticated
enough to handle landings on a single powered leg. In the model, with
its passive control system, horizontal stability is provided by three
landing legs; the base formed by these legs being wide enough that the
deceleration force will not cause an over-turning moment. (See Fig. 10)
To handle the condition shown in Fig. 10 is not too difficult. However,
if the vehicle were allowed to rotate gbout its vertical axis, it would
be required to accept a force whose horizontal cqmponent might possess
any azimuth. This means that ideally the leg should be free to.dissipate
energy by moving in the direction of a landing force that can vary
direction. It is difficult to build a linkage that will do this. To
alleviate this problem the vehicle is to be stabilized in azimuth by the
vertical fin mentioned earlier. This reduces rotation about the vertical
axis and decreases the range of the approach angle, meking maximum mis-
alignment with the direction the foot travels correspondingly.smaller.

A search is currently underway for lightweight dampers to dissipate the
kinetic energy. When these are found actual design of the leg linkage
may proceed. |

The centerline of the propulsion leg must pass through the center
of gravity of the vehicle and must be adjustable through a 450 elevation
range to cover conditions varying from vertical hops to maximum range

hops.

12
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IV. PROPULSION FOR THE LUNAR POGO

The basic description of the propulsion for the Lunar Pogo is given
in the Ballistics and Propulsion sections of (Ref. 5) SUDAAR No. 359,
"Small Scale Lunar Surface Personnel Transporter Employing the Hopping
Mode." The first-order propulsion model used is shown in Fig. 6.
Preliminary analysis of propulsion is given in the Stanford University
Ph.D. thesis of Dr. Marshall Kaplan, "Investigation of a Hopping Trans-
porter Concept for Lunar Exploration", May 1968.(:L

Several relationships among the propulsion parameters were presented
or discussed in SUDAAR No. 359 without derivation. In Appendix A are

presented the derivations of the equations

(mzem)g(y-1) (f_i‘g) tan o0
w o)

(1)
e
Mg(y-1) e
pf = (df ('Y-lT (E-f-) cot aopt (2)
2A[l-(a—) ]
d

which give the initial pressure PO in the cylinder that must be used
and the final pressure Pf in the cylinder that must be attained for a

specified range XR, optimum launch angle ao and pairs of piston

’
displacements de and do or dd and. df. Pt

Equations determining the mass of gas which must be added or vented
to the eylinder are shown in Appendix B.

To determine the quantity of propellant gas needed for the propulsion
system and to see more clearly the physics of propulsion system opefation,
a first-order model of the operating cyecle for a single hop was set up.
This model made use of Egs. (1) and (2), the equations for adding and
venting gas, and the isentropic gas expansion relations. It was then
extended to cover a consecutive series of hops. Figures 11 and 12 show
the mass transfers and the pressure and temperature changes as the Lunar
Pogo does several hops over level and hilly lunar terrain respectively.

The derivation of this model is given in Appendix C.

16
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Finally, Appendix D describes how the optimum piston displacement
ratio (de/do)Opt is determined.

Since the publication of SUDAAR No. 359, the semi-annual report,
most effort has been on the Pogo Demonstrator. However, many of the more
realistic problems of the ultimate lunar device have been identified,
beyond the first-order representation in SUDAAR No. 359. These include
questions such as: How can the propulsion system impart a specified
velocity to the Lunar Pogo while the foot is sliding or adhering to the
surface? Is some sort of velocity feedback system needed during
acceleration? If gas must be added to or vented from the piston cylinder

at the beginning of deceleration to achieve a proper landing, what must

be the response time and flow capacity of the valves that carry out the
gas transfer? What are the losses due to friction and heat transfer,
and how do they affect the operation cycle? Future analytical work on

the Tunar Pogo will be addressed to these more realistic problems.

19



V. TERRESTRIAL DEMONSTRATOR PROPULSION

Introduction

The purpose of the propulsion unit in the Pogo Demonstrator is
to simulate approximately the propulsion unit in the ultimate Lunar Pogo.
The two propulsion units are fundamentally similar. They both employ gas
expansion in a cylinder to accelerate the main body of the Pogo up a
thrust leg. Basic differences between the two systems are: (1) the
Demonstrator propulsion unit is designed to operate in the earth's
gravity field, whereas the Lunar Pogo propulsion unit would operate on
the moon in a 1/6 g field; (2) the Demonstrator propulsion unit operates
only during acceleration and part of free flight — it must retract the
constant orientation thrust leg to its initial (take-off) position before
shock-gbsorber deceleration starts, whereas the Lunar Pogo propulsion
unit accelerates, changes orientation, and decelerates, acting over a
complete hopping cycle; and (3) to simplify plumbing, gas flows into the
cylinder of the Demonstrator during acceleration, whereas the analysis
of Lunar Pogo is carried out assuming no mass influx into the cylinder

during acceleration.

Demonstrator Components

Figures 4 and 5 show profiles df the propulsion unit proposed
for the Demonstrator. The two propellant tanks will store air at high
pressure. The pressure regulator maintains the air pressure upstream of
the solenoid valve at an approximately constant value, so that the mass
flux through the valve can be determined. The solenoid valve is a three-
way high-speed valve with a normally closed inlet port. When the valve
is energized, air can flow through the inlet port into the cylinder.

When the valve is not energized, air can flow from the cylinder through
the outlet port to the atmosphere.

A positioning latchvand thrust leg catch keep the thrust leg in its
initial teke-off position during the last part of free flight, during
landing, and while on the ground. A metal (or air) compression spring
downstream of the piston face engages the thrust leg and returns it to its

initial position. If the frictional forces between the piston and cylinder

20



walls are too high, the compression spring may be aided by an external
extension spring attached to the thrust leg, which acts in the axial
direction.

Not shown in Figs. 4 and 5, but needed for the propulsion unit are

a DC power supply and a timing circuit for the solenoid valve.

Operational Cycle

The propulsion unit will operate approximately as follows. Initially,
the Demonstrator is on the ground. On an electrical signal from an
external control unit, the timing circuit is activeated, This causes the
inlet port of the solenoid valve to begin opening, so that air can flow
into the cylinder. The pressure in the cylinder builds up very rapidly.
When the pressure force has reached a sufficient value, the thrust leg
cateh pushes the positioning latch to the side. The main body of the
Demonstrator then accelerates up the thrust leg. About the instant the
piston face passes the blow-out ports, the timing circuit causes the inlet
port of the solenoid valve to close and the outlet port to open. Almost
all of the air in the cylinder is vented to the atmosphere. The pressure
in the cylinder drops very rapidly to atmosphere, and the main body
acceleration terminates.

At this point engagement of the thrust leg to the main body begins.
After the piston face passes the blow-out ports, it contacts the compres-
sion spring. It compresses the spring until the relative velocity between
the main body and thrust leg is zero. This completes engagement as the
Demonstrator enters free flight.

The compression spring then expands, forcing the thrust leg back up
the cylinder. The thrust leg returns to its initial position,
where it is held by the positioning latch for the remainder of the flight
This completes operation of the propulsion unit until initiation of
another hop. For a 10-foot hop in a, l-g gravity field, the entire cycle

should be completed in one second.

Demonstrator Model

To aid in making a quantitative design for the propulsion unit, a

simplified model of the propulsion unit was set up. This model is shown in
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Fig. 6.

te

The significant time intervals for the model are:

-t : on ground

@]

-t : acceleration

- t_: engagement (leg pickup)

- t.: free flight

- t_t+ deceleration

£

The following assumptlons or approximations are made for the

operaticnal sequence:

1)

2)

3)

Y
5)

6)

7)

8)
9)

10)
11)

12)
13)

There is no angular motion during acceleration (one-dimensional
motion).

The positional differences between the centers of mass of the
system (which iﬂcludes the thrust leg) and of the main body alone
are negligible for free flight. .

The working fluid is a perfect gas (PV = ngT) with constant
specific heats (E = mgch).

The gas composition is always constant.

The mass of gas in the cyiinder is negligible compared to the
main body mass.

The temperature and pressure of the gas in the accumulator are
constant during acceleration.

The flow through the inlet port of the solenoid valve is always
at sonic speed.

Body forces acting on the gas are neglected.

The addition of gas to the piston and the expansion during
acceleration occur adiabatically and isentropically.

The hop is over level terrain.

The positioning latch has an effective force constant keff in
the axial direction during acceleration.

The equilibrium gas relations are valid for the dynamic situation.
The foot does not slide during acceleration or adhere to the sur-

face at engagement.
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14) Frictional forces at the solenoid valve and between the piston
and cylinder walls are neglected .

It is felt that the errors involved in making the preceding assump-
tions will be small, except possibly for the last two assumptions. The
effects of sliding or having the foot adhere to the surface cannot be
estimated at this time. During acceleration frictional losses should not
affect the performance substantially, since their effect can be negated
by raising the piston gas pressure slightly.

However, the effect of frictional forces may become significant during
the time of thrust leg return. If this should occur, the Demonstrator
would have to be altered by the addition of an extension spring (for thrust
leg return), which acts during the entire period of acceleration. Use of
an extension spring would not complicate the following analysis very much,
but would result in greater energy losses.

During engagement and free flight, the only external force doing work
on the Demonstrator is ﬁhe gravitational force. From solution [Ref. 1] of the
equations of motion for these intervals, the following equation results
for the approximate relationship between the ballistic range and the main
body velocity at the beginning of engagement: (Symbols defined in
Appendix E)

&%
Vo= ———

m
e sin2C (l * ﬁ)

Summation of forces in the axial direction during acceleration leads

to the following differential equation of motion:

dv
(P-Patm)A - Mg sin O - keff(d-do) =M=p (1)
where v = dd/dt. As soon as the thrust leg catch deflects the position-
ing latch out of the way, keff goes to zero. See Fig. 6.
Use of the energy equation for a gas flowing into a cylinder of

varying volume leads to the following energy differential equation:

dam
ap av _ g 2
VETYEF VYR e @ (2)

where V = Ad. dmg/dt represents the rate at which gas flows into the
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cylinder. Equation (2) was derived from an analysis similar to that
for the energy equations derived in Appendix B.

Equations (1) and (2) constitute two equations in two dependent
variables d and P and in one independent variable +t. They cannot be
analytically integrated as far as is known. They can only be numerically-

integrated for various values of the parameters.

Design Criteria

The design criteria established for the Demonstrator were: (1) the
weight of the propulsion unit should be no more than 20-25 lbm out of a
total estimated weight of 50 lbm for the Demonstrator; (2) all components
of the propulsion unit were to be made from commercially-available hard-
ware; (3) the maximum acceleration felt by the main body of the Demonstrator
during acceleration was to be no more than 15 go; (4) the piston travel
during acceleration, (de-do), was to be no more than 1 ft; (5) the Demon-
strator should be capable of making about 25 uniform hops; (6) the hori-
zontal range of the hops should be at least 10 ft.

Hardware Sizing

Quantitative design of the propulsion unit was based on commercially
available hardware and the limits to which this hardware could be stressed.
The system layout is shown in Figs. 4 and 5.

The best off-the-shelf pressure vessel found that was acceptable as
a propellant tank could store about 0.6 lbm of air at 2000 psi. Assuming
half the air were used during a hopping sequence, the tank pressure for
the last hop would be about 1000 psi. This value of 1000 psi was taken
as the minimum upstresm tank pressure for design purposes.

The simplest way of making each hop approximately the same is to
have the solenoid inlet port open for the same length of time during
acceleration and to have the pressure upstream of the solenoid the same
for each hop, so that the mass influx rate into the cylinder is identical
for each hop. This is done by having the timing circuit so designed as
always to energize the solenoid valve for the same length of time and by
having a pressure regulator upstream of the solenoid. A regulated pressure

of 800 psi was selected as the pressure to be maintained by the regulator.
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This pressure assures that there will always be a pressure differentisl
across the regulator.

To have sonic flow through the solenoid inlet port, the pressure in
the cylinder must be limited to about 400 psi. This pressure is then the
maximum allowable pressure for the cylinder.

Another limitation on the propulsion unit was that the mass flow rate

through availaeble aerospace solenoid valves at the pressures needed was
rather low.

.Mathematical Analysis

To meet the design criteria, wvalues taken for Xﬁ, a, and M were:

Xt = 12.5 ft v, = 22 ft/sec
o) o

a = aopt = 45" (at ¢ =0")

M =45 1bm % ~ 0.1

Values used for other constants were:

v = vY(air) = 1.0
R = R(air) = 1715ft-1b/slug-"R
O,
Tooe = Tacc(room) = 530°R
.2
Pty = 14.7 1b/in
8, = 32.2 ft/sec2

Opening and closing times of 30 milliseconds were assumed for the solenoid
valve. For valve opening dmg/dt was taken to increase linearly from
dmg/dt =0 at t =0 to dmg/dt = ﬁgmax at t = 30 msec, and then to
remain at dm_/dt for t > 30 msec.

it

m
gmax
Equations (1) and (2) were then written into a computer program and
numerically integrated for appropriate ranges of keff’ do’ A, and mgmax'
Figure 7 shows a typical set of curves resulting from the numerical
integration.
From an analysis of the results, the following parameter values were

selected for the demonstrator design:
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d =4 in
o]
de - do = 12 in
A =2 in
i =.0
mgmax 05 slug/sec

Choice of the preceding parameter values will meet the design criteria,
give near optimum performance, and still allow a margin for frictional
losses and other losses.

Corresponding to the values chosen for do’ de’ A, and ﬁgmax’ the

following additional parameter values result:

amax ~ 15 gO

t - t_ = 100 msec
e o)
. 2
P = k00 1b/in
max
Amg =~ .0005 slug/hop

For 25 hops, .018 slug = .6 lbm of air must be supplied to the eylinder.
Assuming leakage losses are negligible, this amcount of air could be
supplied by using two of the previously described propellant tanks.

The physical dimensions of the propulsion unit shown in Figs. L ang
5 correspond closely to the design specifications that have just been

given.
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VI. STABILIZATION AND CONTROL FOR THE LUNAR HOPPER

i
A. Introduction

As presently envisioned, the pogo transporter will tip over to the
desired launch angle and will be held there with an ankle brake between
the leg and foot. This assumes that the foot is large enough to support
the vehicle (see pg. 54-55 of reference 5, SUDAAR 359). Because
the foot is locked during the acceleration phase, the vehicle should
leave the surface with zero angular velocity. The control system must

re-orient the vehicle to the proper landing orientation.

B. Landing Orientation

The desired landing orientation is a function of the vehicle's
center of mass velocity and so it is time varying. At landing there
must be an angleeibetween_the center of mass velocity vector and the leg
so that some of the velocity is used to bring the vehicle to the vertical.
See Fig. 13. The velocity perpendicular to the leg is v = Vv gin €.

T
The tangential velocity required to come to the vertical and arrive with

zero angular velocity is Vp, = Noge[l-cos(@-c)]. So € must satisfy

this equation

v sin ¢ =~2g4[l-cos(6-€)]
Now, e is small so we can approximate.
sin e & ¢

cos(6-¢) L cos 8 + e sin @

ve & ~N2gg[l-cos 6 - ¢ sin 6]

€ P
v v

2+2§_&$ﬂ_€€_§§;&(1_cos ) = 0

YA '
- .
c = - B4 sgn + [8 4 sin® 28201 _cos 0)

4
v V)+ V2\

So, given v and 6 at each instant, ¢ can be calculated and used as

a command to the control system. This assumes there is no slippage of

the foot and that the leg is of constant length during the landing. A
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Figure 13. Velocity Leg Orientation on Landing
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more nearly exact derivation is outlined in Appendix E.

C. Control System

As discussed in reference 5, SUDAAR No. 359, twin gyro
controllers are being considered for the vehicle attitude control. The
pertinent equations governing the motion of the vehicle for pitech plane

motion are

16 + 2h® cos ¢ = Mext

J@ - 1o cos ® =T

where 6 1s the pitch angle of the vehicle measured from an inertial
reference direction, ¢ 1is the gimbal angle, Méxt is the external
disturbance torques on the vehicle, and T dis the control torque on the
gyros. BSee Fig. 1l4. The form for T must be chosen so that the vehicle
has the desired response. We can linearize these equations assuming that

¢ remains small.

I8 + 2ho = Mext

Jp-mb =T
Assume that T = kG(Q-ec) + kéé - by, and take the Laplace transform of

these equations. In matrix form, we have

~— - r— -

M
Z 2h : ext . 2h
S =3 ® = + §9(0)+6(0)+ 7= 9(0)
(hkg )S+ky 5 1 i kg b .
sfregean—] (87 ¢ = s) ] 0 = ®C+(S+-j-)<v (0)+9(0)
L. S k"
L -G + 2)9(0) ]

The characteristic equation is

2hk
3 b2, 2h . 0y _
S(8% 43 € + Flh F k)8 +gy) = O

By suitably choosing b, ke, and ké we can locate the roots of the
characteristic equation to give a suitable response. Here we have

considered no instrument errors or uncertainty torques about the gimbal
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axis. An uncertainty will cause a steady state offset in 6. This off-
set can be eliminated by using integral control, i.e., employing a control
torque proportional to [6dt. The gyro and torquers will have to be sized
to reorient the vehicle in the allotted time of flight. A sample root
locus design is shown in Appendix F. The block diagram for the pitch
plane control system is shown in Fig. 15. Control about the roll and yaw
axes will be similar. During flight, the roll and yaw controllers will
keep the roll and yaw angles nulled. They will have to be gized to handle
the gyroscopic disturbance torques resulting from the pitch rate. The
block diagram for the roll and yaw axes is shown in Fig. 16. The pitch
motion can essentially be decoupled from roll-yaw since roll and yaw

rates will be very small and hence the gyroscopic disturbing torques about
the pitch axis will be small. An example system design is done in

Appendix F, using approximate values for the vehicle characteristics.

D. Mass Expulsion vg. Twin Gyro Control

The most critical phase of the flight is the re-orientation to the
proper landing position. Assume we must rotate the vehicle through 90O
in 4 seconds. This can be done for example by accelerating the vehicle
for half the time and decelerating it the final half. The required angular

acceleration is

y X
4O 2 . 2
o = ;5— =3z © 0.393 rad/sec

2
Assume & moment arm of 0.61 m and a vehicle moment of inertia of 407 kg-m .

Then the thrust to produce this O must be 262 newtons. Now if a rocket

were to be used,

F = mec Isp = 150 gec
F = mISPg
m asi.t = .71 kg/hop

sp®

Therefore, since the vehicle is designed for 1000 hops, reaction thrust

would be completely unsatisfactory.
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Figure 16. Roll and Yaw Axis Controller Schematic
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The peak power required for twin gyro operation is of the order of
200 watts. A 4-second hop would require at most 800 watt-seconds = 0.22
watt-hours. One thousand hops require 220 watt-hours. Batteries supply
(conservatively) 40 watt-hours/kg. Thus about 5.5 kg of batteries would

be required.

3



VII. SYSTEM DESIGN

Primary attention is being focussed on a transporter in which the
propulsion leg is fixed to the vehicle. The various arguments of con-
venience simplicity, etc., which were used in arriving at this choice
instead of a swinging leg design are discussed in reference [5] pp. 9-12,
SUDAAR No. 359. The motion of a fixed thrust leg vehicle
is shown diagrammatically in Fig. 2. Figure 17 shows an artists rough
sketch of how such a design might appear in flight.

An overall gquantitative systems analysis and optimization will
require a mathematical model of each of the subsystems, such as propulsion,
stabilization, and structures, each of which should incorporate a scaling
law for the weight of important components. The state of the development
of the subsystems does not yet permit defining mathematical models, but
it is anticipated that more rapid progress will occur after current work
on the terrestrial demonstrator is completed.

A lunar hopping vehicle resembles a missile system in that weight
plays an important role. It is necessary therefore to evaluate design
trade offs carefully to secure a final configuration with minimum weight.
Owing to the complex interactions among various pogo parameters, separate
optima for each subsystem will not ensure an optimum design for the over-
all system.

One method for achieving overall system optimization is to use a
"generalized design analysis". Quoting from reference [L] page 20-07, a
description of such a method as applied to a missile follows: "A general-
ized design analysis provides a unified study of self-consistent conditions
in which all the factors are allowed to interact properly with one another.
This analysis consists of a formulation of features such as component weight
of the missile structure, hydraulic system, engine, pressurizing systems;
the enviromnment conditions of the atmosphere; the geometric aspects of
size, shape, number of stages, and position of components; and the physical
properties of densities, allowable stresses, specific heats, and vapor
pressures.

"The design and performance of the missile system are determined by

interactions between these factors consistent with the physical laws
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governing traJjectories, aerodynamics, thermodynamics, material failure,
radiation, etc., and are subject to the constraining conditions of pump
pressure margins, minimum thicknesses, mixture ratios, etc."

"The basic technique of the analysis is the reduction of detailed
analysis of the complete complex system to a few relatively simple com-
ponent relationships that react with one another. The component analyses
are coupled together, the "output" of one serving as "input" to others,
in sucha a manner as to close the loop for the system. Because of the
complexity, programming on a digital computer is required."”

"Me analysis is established in a manner that allows introduction of
adjustable parameters such as allowable stress, minimum gage, slenderness
ratio, etc., as inputs to the system. As the vehicle "flies" in the
computer, certain variables, such as skin gage, bending moments, pressures,
ete., aré computed at each instant of flight so that the vehicle designs
itself as it moves along consistent with the conditions and constraints
of the analysis.".

Although the component analyses for the pogo system will differ from
those of a missile system, a basic computer program for carrying out the
analysis would be similar. Previous successes with the use of this type
of analysis on missle systems and the inherent similarities between the
missile and pogo systems indicate that a substantial contribution to the
pogo system design would result from an analysis of this sort.

Figure 18 is a flow chart which gives an approximate idea of the
component analyses which must be carried out and their mutual interaction.
As specific quantitative component analyses are carried out, refinement
of the overall systems analysis can take place.

The following outputs can be expected from this analysis: 1) prelimi-
nary size and performance estimates for different vehicle configurations,
2) specific information for detail design parameters such as cylinder wall
thickness, gyro sizes, and weights of various components which are cther-
wise difficult to determine owing to strong interactions, and 3) exchange
ratios for the effects on overall performance of such parameter changes
as an increase in payload, decrease in maximum acceleration which can be
tolerated by the pilot, or decreased launch angle required to prevent

slippage of the foot.
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VIITI. SOIL MECHANICS AND FOOT DESIGN

As was discussed in some detail in the semi-annual report, SUDAAR
No. 359, the lunar pogo device will operate most efficiently at take-
offs 450 to the surface. To permit this departure angle the coefficient
of friction between the lunar surface and the pogo foot must be at
least 1.0. The tractive effort, or maximum shearing force, developed

between a soill and a flat plate on its surface is given by the formula
H=Wtan ¢ + Ac

where W 1is the weight on the plate, A is the contact area with the
surface, ¢ is the coefficient of cohesion of the soil, and © is the
"angle of friction" of the soil.

The . Surveyor landings have provided data on the cohesive and fric-
tional properties of the lunar soll. ¢ 1s gpproximately 350 and c¢ is

0.07 psi which indicates 1little cohesiveness. For these values,

i
W

1k

tan ¢ = 0.7

which appears too small permit hBO take-offs without cleats.
According to M. G. Bekker in Off-The-Road Locomotion, the shearing

force can be augmented by the addition of cleats to the foot pads. The

shearing force formula becomes

_ g bts tan @ bc(h2+sg)

=W ShTan ©® s-h tan @

where b, s, and h are the cleat dimensions shown in Fig. 19a. Since
the 1200 1b. lunar hopper will experience a peak acceleration of 5 g's
on the lunar surface, which we assume will support 5 psi at a depth of

2 cm., a foot area of 1200 in® is necessary. With h = s = 6 in,

6+6(0.7)] N 6(.07)(36+36)

B = vz 50.7) 5.6(0.7)

H=w5.67) + 16.8 (ILB)

1l

%
Apollo XI data now (7/23/69) upcoming may modify this conclusion.
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The cohesive force is negligible. Since the cleat will be designed

to operate in any direction, a T shape is required as shown in Fig. 19b.
With this configuration, only half the weight on each cleat contributes
to the production of shearing force in any one direction. This reduces

H/W to 2.88. (leat center-to-center spacing is found by another formula
from Bekker to be

4, = 1.8(s+h)

giving 21.6 in. between the foot segments for optimal operation. A more
detailed analysis of the above material was presented in SUDAAR 359,
semi-annual report, Ref. 5.

The lunar surface consists of 4 basic features: maria, craters,
mountaing, and rilles. The maria areas are mainly flat plains with rocky
debris. Craters have diameters up to 200 kilometers while the mountains
rise to 6 kilometers in height. The rilles are long trenches in the
surface about 1 kilometer deep and a couple of kilometers wide. The
terrain which the lunar hopper can traverse will depend to a large extent
on the capabilities of the foot. It may be impossible for the pogo to
hop across a rille, and thée steepness of the slope which it can negotiate
is still a matter of investigation.

A current study is being conducted at Jet Propulsion Laboratory
(Space Program Summary 37-53 Vol. III, Oct. 31, 1968) to determine the
effect of sloping soil surface on bearing cgpacity and shearing force.
The soil being used is a cohesionless sand closely simulating the lunar
soil. Most tests were made on wheels, but one test was conducted on a
rectangular plate resting on a slope of 150. The report states that
there is "significant degradation of bearing capacity due to slope
influences even at relatively low surface slopes compared to the soil
angle of repose”. It also points out the need for further investigation
of soil thrust and slip on sloping terrain.

Another potential problem for hopping transport was brought to light
by Surveyor VII. This craft landed near the rim of the crater Tycho in
an area littered with rocky debris. Some of the rocks surrounding the

craft were of a size (larger than 20 cm.) which might damage the foot
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Figure 19. Cleat Configuration.
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structure of a hopper or make the area impassible. A table of rock

size and frequency distribution, taken from the Surveyor VIII report, is

given below.

ROCK WIDTH (CM) NO. OF ROCKS PER 1000 M?
80 1
20 to 80 67
15 to 20 106
10 to 15 3&7.
5 to 10 5,100

It may be necessary to provide the foot segments with a type of
suspension which enables the craft to land on smaller rocks while main-
taining the majority of the foot segments in contact with the surface.
Large pieces, say 80 cm. or more in size, could be avoided by the pilot.
Spare foot segments would be carried on board in case of an emergency
where a segment has been destroyed.

It becomes apparent that tests must be conducted on a lunar-type
soil to obtain more information on the soil-foot interaction. A testing
device has been proposed which would allow experiments concerning energy
losses on landing and teke-off, the omnidirectionality of cleat designs,
shear resistance at different angles of take-off, and the degradation of
performance on sloped surfaces. The Soil Impact Simulator consists of a
variable angle slide containing a weight to which the foot segment is
attached through an adjustable spring (Fig. 20). Withe the knowledge of
height of the weight and the compression of the spring, energy losses
can be calculated. Also the speed and force of impact can be varied

to simulate the data from the lunar hopping transporter.
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IX CONCLUSION

Substantial progress has been made over the last year in three areas
of fundamental importance to the attaimment of a hopping transport
system; namely, procuring equipment for measurement of human acceleration
tolerance, analysis of vehicle propulsion and stabilization performance,
and fabrication of a terrestrial demonstrator vehicle.

Three other areas in which only a start has been made are: overall
design, soil interaction, and detail guidance and control circuitry.

It is expected that data on human acceleration tolerance will be
secured in the near future and that this will be followed at a later
date by laboratory "flight" tests of a sub-scale twin-gyro programmable
attitude-control system, and by landing and launch propulsion tests in
simulated lunar soil.

The status of lunar hopping transportation vis-a-vis the rover and
flyer concepts which are now being implemented by NASA will become much
clearer in the next 12 to 18 months. 8o far, there is every indication
that hopping is competitive with wheels or reaction jets, and in view of
the obvious need for lunar mobility, continuation of the present program

would appear to be a wise gtratagem.
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APPENDIX A

EQUATIONS FOR THE INITIAL AND FINAL PRESSURES THAT MUST BE
ACHIEVED IN THE CYLINDER

To determine the initial pressure needed in the cylinder to attain
a specified horizontal range and climb for a given set of piston displace~-
ments and to estimate the final pressure that must be reached in the
cylinder to have an acceptable landing, a first-order model of the ILunar
Pogo was set up.

A schematic of the first-order model in ballistic flight is shown in

Fig. 21. The six basic time intervals in the operational sequence are:

tf to: on ground

t -t : acceleration
o] e~

t,_ - t,,: engagement (leg pickup)
ot td_: free flight

ty - ty.: disengagement (leg touchdown)

t -t _: deceleration

Figure 22 is a schematic of the first-order model during acceleration.
It shows the forces acting on the Lunar Pogo that determine the motion
during acceleration. The motion during deceleration is quite similar to
the motion during acceleration.
The following assumptions are made for the operational sequence:
l) There is no angular motion during acceleration or deceleration
(one-dimensional motion).
2) The foot does not slide during acceleration or deceleration or
adhere to the Lunar surface at engagement.
3) Engagement and disengagement are instantaneous.
4) The linear momentum of the system is conserved at engagement.
5) The foot loses all its momentum to the ground at disengagement,
without affecting the main body.
6) The positional differences between the centers of mass of the

system and of the main body alone are negligible for free flight.
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7) The averasge-slope rise line LR is parallel to the ballistic rise
line L , as shown in Fig. 21. That is, tan o = (ZR/XR) s (zb/xb).

8) The cylinder gas is a perfect gas (PV = ngT) with constant
specific heats (E = mchT).

9) Adiabatic isentropic expansion during acceleration and compression
during deceleration occur (PV' = const).

10) The gas composition is constant (Y = const).

11) The mass of the gas in the cylinder is negligible compared to the
main body mass.

12) The equilibrium gas relations are valid for the dynamic situation.

13) Frictional forces between the piston and cylinder walls are
negligible.

. . It o
lh)‘ Launch is at optimum launch angle Obpt =T + 5 (and, prt +

Bopt - %)°
Under the preceding assumptions, the only forces that act in the
axial direction on the main body during acceleration and deceleration
are the pressure force and the axial component of the gravitational
force. The relationship between pressure and piston cylinder displace-

ment is:
de = const

since PVW = const and V = Ad, where A 1is constant for the cylinder.
Then, summation of forces in the axial direction gives the following

equation of motion of the main body during acceleration:

2 a v
M é—% + Mg sin o = AP = AP (—9)
at o‘d

For deceleration the corresponding equation of motion is:

2 a. Y
ML% 4 Mg sin B = AP = AP (<L)
112 £\

These two equations can be analytically integrated to give the
initial and final gas pressures in texrms of the piston displacements and

the main body velocities Jjust before engagement and at disengagement.

The integrated equations can be arranged in the following form:

L8



2

v
Me(y-1) [EE%; + (ai - 1)sin o]
P =
o A d -1
[1-(3) =),
e
V2
a+ a .
e(y-1) [Egag + (a; - 1)sin B]
Fe ==X d. (y-1)
[1-(3—) 1
d

During free flight the only external force acting on the system is
gravity. Then, the equations of motion for the system center of mass

are;:

ol
T\JIM'
il
(@]

o
N

|

= -g

no

dt

Integrating and applying the appropriate boundary conditions to the free

flight equations of motion gives:
Xﬁ = ve+tb cos O
2

. 1
7, = Vé+t sin ¢ - 5 gtb

b b

Noting that tan ¢ = (ZR/xRxg(zb/xb), Z  eand t, are eliminated from the

preceding two equations to give:

2
2ve+

X, = = cosza(tan o - tan o)

Kinetic plus potential energy is conserved during free flight, so
that:

2 1l 2
Vé+ =5 vd+ + gXﬁ tan ¢

Mo}

From the geometry of Fig. 21:
Xe =X+ (de—do)cos o+ (dd-df)cos B
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Since momentum is conserved at enegagement:

m
Ve © 1+ F/I)ve+

while at disengagement:

v =V

d+ d-

Now, assuming launch is at optimum launch angle O = O £ the five

preceding equations are combined with the equations for P and Pf to
give:

d d
o = ———I:E— {}l + )1iXR - (—— - 1)cos %ot _(E% - af)sin QgpéJ.
‘ a a_ (y-1)
tan O‘opt + 2(a§ - 1)sin O‘opt} /[1-(d—:-) ]

d d '
— cot O + ( -1)- ( e O)cot o Jcos @ :}
. Mg (y-1) {:df opt f f f opt opt

f 24 £ \Y-1)
[1( ) 1

lav}
1

For 40° < o < 500, the terms involving the ratios of the displace-
opt

ments will normally be very small compared to either Xﬁ/d or Xﬁ/df,
and will partially cancel. Also, for expected values of m/M, (1 + m/M)
(1 +2 ﬁ). Then, with a maximum error of less than l%, the equations for
PO and Pf can be simplified to:

P - (M+2m>§(fy(1> (Bt o - (12)
A[1-(=2 %
2A[1-( o) ]

P, = Mgﬁx-lzv 1)—~(Xh)cot Xt (2a)
2A[1- (——) ]

50
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APPENDIX B

TEMPERATURE-PRESSURE-MASS RELATTONSHIPS FOR GAS TRANSFER
BETWEEN GAS RESERVOIRS

The relationships between the equilibrium gas temperatures, equili-
brium gas pressures, and masses of gas are derived for the transfer of
gas through a pressure differential from one reservoir to a second one
at a lower pressure.

Consider the system shown in Fig. 23. The subscripts "A" and "B"
indicate Reservoirs "A" and "B" respectively. For the flow as indicated
in Fig. 23, pressure PA is always greater than pressure PB' At time
t = t, — corresponding to state "1 " the valve begins to open so that
gas flows from Reservoir "A" to Reservoir "B". The valve is closed
before the pressures equalize. At a later time +© = t2 — corresponding
to state "2 ') the valve is completely closed.

In addition to the agssumptions listed in Appendix A with regard to
the gas, the following assumptions are made for the gas flow:

1) There is no heat flow between the reservoirs or through the

reservoir walls.

2) Frictional losses at the valve and at the reservoir walls are

neglected.

3) Body forces acting on the gas are negligible.

4) States "1" and "2" are equilibrium states.

5) The total temperature of the gas in either reservoir is constant

throughout the reservoir at amy time (no gradients).

Control volumes are drawn about Reservoirs "A" and "B" as shown in
Fig. 24. Consider an arbitrary control volume Vbl enclosed by a surface
Sur' Under the assumptions made, the general energy equation at constant
volume reduces to:

gft-f (e + %vz)pd'r = -jg (e + -]é'- vz + %)p?rg-ﬁds

Vbl Sur

and the continuity equation is:

d. f - A
- AT = = «0d8
it ° jg PVg

VOl Sur- 51



Reservoir A" Reservoir "n"

Valv
PA! VA, ( L PB' VB,
Mgp, T mgg, Tg
Gas Flow
PA D PB

Flgure 23. Gas Flow Between Two Reservoirs.
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Figure 24. Control Volumes for Gas Flow Between Two Reservoirs.
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Since the gas is completely perfect:
1 v2 P _ 1 _ _
e +3 g+phh+2V§—ht—Cth

Then, the right hand side of the energy equation becomes:

1 2  Py= . —
- +=v_ + =)pv +AdS = - c T pv _-ndS
jg (e 5 Jov _+fi jg OV, Tl

5 5
ur ur

It

—:#\ (Cth)mass pvg-nds = _(cth)mass :#\ pvg-nds
S
u.

r flux flux Sur
dm
_ y d = 2
B (cth)mass dtf pdt = cp(Tt)mass dt
flux Vbl flux

where Cth = (cpT%)mass flux Since oV-0dS is the mass flux through the

boundary Sur’ (Tt)mass flux is assumed constant, and m.g = . pdTt is
the mass of gas enclosed by Sur' ol
Next, the relations:
1L 2 1l 2
Cth = ht =h + 5 vg = cpT + 5 vg
c =-c¢c_ =R
o) v
CP
e =Y
v

can be combined to give

1.2 ,
e + 5 vg = cht(l+€)

where

2
e_.(_.’}i:}f(l)f&_
-T2 T RT

5k



The integral of e + % Vg

e over the mass enclosed by Sur becomes :

1l 2
f (e + -évg)pd'r f (1 + e)cv’I‘tpdT

Vol Vbl

=c T, Jr (1 + e)pdr
Vol
For the actual flow problem being considered, the maximum gas velocity

occurs at the valve. If this velocity is sonic, then (T/Tt) = 2/(y+1)
and vg = YRT, so that:

JenZ 2y (v
max 2 v+l (v+1)

L
15

i

for a gas with <Y = 1.4. Elsewhere in either of the reservoirs, the gas
velocity is much smaller. Then, if Vél corresponds to the control volume
about either Reservoir "A" or "B", ¢ may be neglected compared to unity,
so that:

Jr (e + % vz)pdr cht b/\ odT
Vo1 Vo1

= chtmg

The energy equation for either of the control volumes becomes:

a dmg
af(chtmg) = cp(Tt)mass dt
flux
or
q dm.g
Ef(mth) - V(I%)mass dt
flux

25



For this flow problem, the mass flux is from Reservoir "A" to

. npn — i
Reservoir "B, so that (Tt)mass Plux = TtA always. Applying the energy
equation to Reservoirs "A" and "B" then yields:
dm
gA
dt( ghA tA) tA at (1b)
dm
gB
dt( o) = Yea Jt (2v)
The total mass of gas in the two reservoirs mgA + mgB = mgAl + mgBl
is constant, so:
dm dm
—8A 8B _
5+t =0 (3b)

Equations (1b), (2b), and (3b) can now be integrated and combined
with the equation of state (PV = ngT) for the reservoirs to determine
the new gas temperature and the new masses of gas in the reservoirs in
terms of the new pressures, the old temperatures, pressures, and masses,

and other constants. For a general case with two finite reservoirs of

volumes VA and Vﬁ the new temperature TB2 and new mass of gas m,gB2
in Reservoir B, the reservoir being filled are:
PBE
TB2_ FB1 (Lp)
- —
T Pa Tm1 Va Pp1 V5 ( Fro DI
SE v Sl ol oo =
Bl “Al 'B L A A \TRL . '
1
B2 Pa1 Tm1 Va [ Py Vp (P WY
mo TR LT TR T, \By (5v)
gBl - Al A Bl -~
The equations for T and m are similar. Since states "1" and "2"

A2 gA2
are equilibrium states, the total and static temperatures are equal.

Consequently, the total temperatures have been replaced by the static
temperatures in Equations (4b) and (5b).

There are two important cases of this gas transfer process. The
first case is that in which gas is added to the low pressure reservoir from
an infinite reservoir. Reservoir "A" becomes an infinite reservoir. Then,

Ppop =Ppy =Pps Tyy =Ty =Ty, and V, - . Equations (4v) and (5b)
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reduce to:

T
TB2 3 % T (6b)
BL “BL, Bl Bl
Y - 7o) t g
B2 A A
m T P
g2 _ . , 1 TBl(PBE 1) (75)
MeB1 Y a1

The second case is that in which gas is vented from one reservoir

into an infinite low pressure reservoir (or vacuum). Then, PB2 = PBl = PB’

TB2 = TBl = TB, and VB - . For this case, only Equation (1b) is needed.
It is easlly integrated to give:

-1

Tap (i«.z.) S5 |
Tpy Ppy L (8p)
m P §

- ()
24

Equations (4b)-(9b) can now be used to examine the process of gas

transfer from one reservoir to another.
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APPENDIX C

COMPUTER MODEL OF LUNAR POGO PROPULSION DYNAMIC OPERATING CYCLE

In order to estimate the amount of propulsion gas needed for the
Lunar Pogo, a dynamic model of the operating cycle for a sequence of hops
has been set up. This model covers all phases of hopping: on ground,
acceleration, free flight, and deceleration. Although the model is quite
simplified, it gives a good qualitative idea of the interactions in the
hopping process and qguantitative estimate of the mass of gas needed.

All pressure changes in the cylinder are made by adding or venting
gas. Gas is added to the cylinder from a gas accumulator and is vented
from the cylinder to the vacuum of the moon. Pressure changes must be
made at two times for a hop. While the Pogo is on the ground and a
horizontal range and climb have been selected, the pressure is adjusted
to attain this range and climb. During free flight (or, equivalently,
at the beginning of deceleration), the pressure is adjusted to attain a
proper landing, i.e., terminal piston position.

"For the model, all the assumptions of Appendices A and B are made,

in addition to the following assumptions:

1) For a hop dd = de, that is, the piston displacement is not
changed during free flight.

2) The launch is at optimum launch angle prt'

3) The pressure and temperature of the gas in the accumulator

supplying the cylinder are constant during the times of gas addition.

Under all of these assumptions and with appropriate symbol changes,
Equations (6b)-(9b) are then used to describe the gas temperature and mass
changes for adding and venting of gas during a hop. Equations (1a) and
(2a) are used to determine the initial gas pressure needed for a hop and
the final gas pressure that must be attained. The adiabatic expansion

relations (from PV’ = const):
Pd’ = const (1c)

Td(v_l) = const (2c)
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are used to determine the pressure and temperature changes during
acceleration and deceleration. With these sets of equations, the complete
pressure, temperature, mass transfer, and piston displacement cycle can be
followed through a hop. UFigure 25 shows how these equations are arranged
to follow P, T; mg, and d through a hop.

A sequence of hops is now formed by specifying: (1) a set of ranges
and launch angles, (2) a set of piston displacements for each hop, (3)
the initial conditions of the gas before the first hop, (4) the temperature
variation of the gas in the accumulator from hop to hop, and (5) the
variation in main body mass from hop to hop. The flow chart in Figure 25
is then used to follow the gas pressure, temperature, and mass through the
sequence of hops.

To see how the flow chart works, assume (n—l) hops of a sequence have
been completed, and the Pogo is on the ground about to begin hop n. Pf,
Tf, and mgf for hop (n-l) are known. For hop n the parameters do, de =
dyo des M Tacc’ XR, and prt are specified. P_ for hop n (that
must be used to achieve the specified range and climb) is calculated. If
P, for hop n is greater than P, for hop (n-1), gas must be added to
the cylinder while the Pogo is on the ground. Otherwise, gas is
vented. TO and mgo for hop n are now calculated from the appropriate
relationships. The Pogo goes through acceleration and Pe and Te are
determined.

The Pogo enters free flight. P for hop n (that must be reached to

f

achleve the specified dd and df) is calculated. From Pf a step back
is taken to calculate Pd' If Pe is greater than Pd’ gas is vented

from the cylinder while the Pogo is in flight. Otherwise, gas is added.

Td and mgd are calculated from the appropriate relationships. The

Pogo goes throught deceleration and Tf is determined. This completes

hop n. Pf, Tf, and m.gf are known at the end of hop n. Hop (n+l) can then
be started by specifying do, de = dd’ df, M, Tacc’ Xﬁ, and O%pt for it.

The flow chart of Fig. 25 was written into a computer program. Several
sequences of hops were then considered. For all of these sequences, the
following additional assumptions were made:

1) da, d, =4y 4

s, M, and T are the same for all hops.
£ acc
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Acceleration

1 ¥
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Figure 25. Flow Chart for Hopping Cycle Parameters
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2) d. = d_ for all hops.

3) The cylinder is empty before the first hop.
Most of the hopping sequences examined were carried out to about 40 hops -
far enough to see what the long term gas state effects in the cylinder
were.

Among the sequences examined was one in which the lunar terrain
consisted of a 50 ft level grade, a 50 ft uphill slope at o = lOO, and
a 50 ft downhill slope at o = -10° - the pattern being continuously

repeated. The Pogo parameters used for this sequence were:

O
M = 38 slug T, = 550°R
2
m = 2 slug A =28.3 in
v = y(N,) = 1.k0 d, =d  =1ft
= R(I,) = 1775 £t-1b/slug-"R a, =d_ =3 ft

5.31 ft/sec2

il

g

Figure 12 shows the Pogo doing a set of three hops over the lunar terrain
at the begimning of this sequence (dotted lines). Another set of three
identical hops at a later point in this sequence is also shown.

Note, that for identical hops (range and launch angle), the gas
temperatures are lower and the gas masses are higher for the later hops
than for the earlier ones. The "average" specific energy (energy per unit
mass) of the gas is lower for the later hops. If a third set of hops at
a still later point were also known, the gas temperature would be lower
and the gas masses would be higher than for the first two sets, but only
very slightly different from the second set of hops. Thus, for this
model - at least, there is a secular change in the condition of the
cylinder gas. For a sequence of hops, which "on the average" is over
level terrain, the average specific energy of the cylinder gas decreases
from its value for the initial hops of a sequence to a value which is
nearly constant for hops at a point sufficiently late in the sequence.

Using the hopping sequence described, an estimate of the amount of
gas needed for a mission of 1000 hops was made. From the increments of
gas added to the cylinder for each hop, the mean amount of gas added

per hop was determined. Summation of this mean amount of gas for 1000
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hops and addition of a gas allowance of 75% to cover initial filling of
the cylinder, refillings if necessary, rougher terrains (slopes steeper
than o = :tho), launches at non-optimum angles, ullage, and a safety
reserve then led to the total amount of gas estimated for the Pogo as

stated on pp. 40-45 of Ref. 5 (SUDAAR 359, Semi-Annual Report).
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APPENDIX D

OPTIMUM PISTON DISPLACEMENT RATIO

There is an optimum piston expansion ratio (de/do)

opt”

Operating

at (de/do) = (de/do)opt minimizes the initial pressure and consequently

the initial acceleration. From Appendix A, the equation for Po is:

o _ (nem)a(y-1)

d ) tan
° 2A[1-(do/de)(v"ijv(XR/ o/ % Topt

For a constant de, the optimum do and consequently (de/do) is

found by setting (BPO/BdO) = 0. Then:

o d (m+2m)g (y-1)
= { (x./a ) tan o}
od,  od, gA(l-(dO/de)(V‘ljfxﬁ/ ol T Topt

(M}Em)g(y-l)Xh tan o
- Bt [y(a fa_)r1) 1
2Ad§[1-(do/ae)(7‘l)]2 1%/ %

=0
or.:

y(do/de)(v-l)—l =0

Solving for (do/de) gives:

(=)
(a,/8)opy =¥ 7-1

1
- . _ (=)
Similarly, operating at (dd/df) = (dd/df)opt =y -1

the final pressure and the final acceleration.
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APPENDIX E

PROPULSION ANALYSTS SYMBOL DEFINITICNS

area of piston face
internal energy
ballistic rise line
average-slope rise line
main body mass

gas pressure

gas constant

surface

gas temperature
volume

horizontal coordinate
ballistic range
horizontal range
vertical coordinate
ballistic climb
vertical climb

acceleration

specific heat at constant pressure

specific heat at constant volume
displacement of piston cylinder
specific internal energy
acceleration of lunar gravity
acceleration of terrestial gravity

specific enthalpy
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k effective force constant
eff

m mf + ml + mP
m. mass of foot
mg mass of gas
m, mass of thrust leg
mP mass of piston face
mgmax maximum mass flow rate through valve
Amg mass of gas added per hop
n number of hop
il unit outward normal
t time
v velocity of center of mass of main body or system
vg gas velocity
o launch angle
B landing angle
4% specific heat ratio

2
c (W‘l)E(E_) g

2 Tt YRT

p mass density of gas
SUBSCRIPTS
A Reservoir "A"
B Reservoir "B"
ace gccumulator
atm atmospheric (terrestrial)
d disengagement
e engagement
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final
maximum
initial

optimum

pickup (of leg)

total
state "1"
state "2"
plus
minus
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APPENDIX F

ANGULAR OFFSET ¢ REQUIRED TO PROVIDE € =0 AT 6 =0
UPON LANDING

When the vehicle lands, the main body moves down the leg compressing
the gas in the cylinder. So the mass center to pivot point distance is
not constant. Assume that the foot and leg lose their kinetic energy
instantaneously upon impact. Referring to the coordinate of Fig. 13, the

equations of motion assuming no foot slippage and a free pivot are

. 22 do v
m¥ - mro +mgCOSQ=APO(-£‘-:IZ+—d;)

Ipé + 2mr fé -mgr sin € =0

The term Apo[do/(r-ro+do)7] is the force that the compressed gas exerts
on the main body. The initial conditions for these differential equations

at t =t. (disengagement) are

d
G(td) =0, r(td) = rd
* V(t ) .
e(td) = - ;TE§7 sin € r(td) = - v(td) cos €

An iterative procedure must be used to determine the value of epsilon such

that the vehicle will come to the vertical with zero angular velocity.

67



APPENDIX G

CALCULATION OF CONTROL MOMENTS FOR TYPICAL LUNAR HOP

Symbols relating to the hopper are defined in Appendix H and

Figure 1k.

The governing linearized equations
2h ext
82 T S C] T
) [(n+y ) S+, ] 2.0slle X
J J | J

The characteristic equation of this matrix is

4 2hk

are

+ 96(0) + 8(0) +

.

1 5(0)

b 3 . 2h 2 0 . _
S +=8 55 (h + ke)s + =5 8= 0
Assume ©(0) and @(0) are both zero. Then,
M 2hk 2h(h+ks )
2 b ext [2] ¢]
o (s° + 3 SHI — + se(o) +6(0)] + IJ 5 @, +"'"IT‘SG(°)
- 2hk9
S[S + = 82 ¥ ——(h &2 k IS + ———
T1J
(h+ké)s + k ] k, k)
5 - [ — ][Mext + 80(0) + 9(0)]-[J e, +( )9(0)]5
- 2hk
3 b 2 2h a
s[s” + = 8 + TE(h+ké)S +'7Ef—]

(h+
6 b 2 v 9
6 +(5+ 2)p(0)-

)
6(0) +(0)

After lift-off, the vehicle must be rotated to the proper landing orienta-

tion.

landing angle is -45° or a net rotation of 90°.

critical requirement on the control system.

this maneuver in sbout 4 seconds for a typical

assume 6(0) = 6(0) = M, =0 and 6
equations become
Ehke
o . =5(/2)
- 2hk
S(S += b, 2B 2h h+k )s + 7 )
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50 ft. hop.

If we assume a hSO launch angle and no change in elevation, the
This will be the most
The vehicle must accomplish
For example,
Then the above




k
- =(x/2)

2hk
3 b2  2h 9
s[8” + 3 57 + _IJ(h+k9)S + =7 ]

A preliminary estimate is that the moment of inertia of the vehicle is

I = 400 kg-m?. Assume h = 200 kg-m?/sec for each gyro wheel and let

each have a radius of gyration of 0.25 meter. Choose ® = 300 rad./sec.,
then m = 10.6 kg. Assuming the wheel to be a thin disk, J = 0.333 kg—m?.

The characteristic equation becomes

8% + 3.0 bS” + 5.0(200 + kg)8 + 3.0 k, = O

or

-3k

5 = 8[S° + 3bS + 3(200 + ky)]

We are dealing with a third order system, and desire the response time
(i.e., the time when O reaches 95% of its steady state value) to be

4 seconds. Also, zero overshoot is desirable. Zero overshoot can be
accomplished as long as the simple pole lies on or to the right of the
line joining the complex poles. Thesé requirements can be met with uh
between 1 and 2 rad./sec. and a/gwh between 0.7 and 1, where O is
the location of the real pole.

The problem then becomes one of locating the open loop polés so that
the root locus passes through an acceptable region of the complex plane.
For example, choose open loop poles at ~1.8+1.63, O. Then b = 1.2 and
ké = -198.1. For these poles the root locus versus ke is shown in
Fig. 26. The minimum of the locus meets the requirement for closed loop
poles and corresponds to a gain ke = 0.953 (the system goes unstable
at a gain k9 = 21). At this gain, the roots of the characteristic
equation are s = -1.2+41.2j, -1.0. Consequently,

4 .49 3 4 .49
S[(s+L)(8+1.2+1.2j)(8+L.2-1.23) s(s+1)(sa+2.us+2.88)

e(8) =

Expanding into parial fractions, there results

_1.57 , =3.03  .738(1-0.7155) , .738(1+0.7153)
0(8) = ==+ 5T * ST 21T.5 ¥ TS.2-L.23
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Figure 26. Root Locus.
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From which,

t .2t

6(t) = 1.57 - 3.03¢ ~ + 1.81e7t

]

sin(1.2t + ¥.); . = 125°34"
1 1

2t

o(t) _3.03e™" + 3.04e 12

sin(1.2t +¥,); ¥, = 99°29'

In the steady state, 6 = xn/2. At t =k sec., 6 = 1.52 rad. The
maximum value of @ occurs at approximately 1l.17 sec. and is approximately
-520. Weksee that @ 1is relatively large, certainly out of the linear
range. However, this is expected. In order to move the vehicle through
90O in four seconds, a relatively large angular velocity must be imparted
to the vehicle and this is done by transferring momentum from the gyros
to the vehicle. If a smaller angle @ is desired, then the gyros must
have more angular momentum. However, there is no reason why ¢ shouldn’
go as high as 600-700. The greater the allowable angle, the lower the

required angular momentum of the gyros. In this example, the system

c+

response has been sssumed very sluggish. A more realistic approach is
to make the gyro response very fast and put in stops at 65-750. With
such fast response, the gyro gimbals open rapidly and hit the stops and
remain there as the vehicle rotates. As £ nears Gc, the gyros back
off from the gimbals.

In the preceeding example, the torque in the gimbals is

T = ke(e-ec) + kg0 - b
Presumably, the bd <torque will be produced viscously by a damper
between the gimbals, so by will not need to be produced electrically.
From The standpoint of power used in actuators, the torque of interest
is

T = ke(e-ec) + k3o

and Pfor this example,

-l-2't

T = .953[-3.0%¢™° + 1.81e sin(1.2t + 2.2)

-1.213

-1.98.1[3.03e-t -~ 3.0ke sin(l.2f +1.735)]

Thus at t = 1 sec.,

2
T = 184.19 kg -9—5 = 135 ft-1bs.
sec
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APPENDIX H

CONTROL THEORY, LIST OF SYMBOLS

b damping constant

¢ characteristic velocity

f thrust

g acceleration of lunar gravity

h angular momentum of gyro wheel

I moment of inertia of the vehicle

J moment of inertia of gyro wheel about a diameter
ke gain in the 6-feedback loop

ké gain in the 6 -feedback loop

£ center of mass to foot distance

m mass

Do oot mass of the foot

mgs mass of the gyro system

r radius of the foot

;7 time of flight

T control torque on gyros

v velocity of the center of mass of the vehicle

a ]

A8 reorientation required about pitch between launch and landing
AV velocity impulse which initiates a hop

€ angle between the velocity vector and thrust leg
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angle between the thrust leg and the vertical

commanded angle 6

damping ratio

slope of terrain

angle of gyro wheel with respect to gyro controller frame
angular velocity of gyro wheel

natural frequency
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